Correction for Bastia et al., Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest.
نویسندگان
چکیده
Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.
منابع مشابه
The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae.
Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of glob...
متن کاملMec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7.
Activation of the eukaryotic replicative DNA helicase, the Mcm2-7 complex, requires phosphorylation by Cdc7/Dbf4 (Dbf4-dependent kinase or DDK), which, in turn, depends on prior phosphorylation of Mcm2-7 by an unknown kinase (or kinases). We identified DDK phosphorylation sites on Mcm4 and Mcm6 and found that phosphorylation of either subunit suffices for cell proliferation. Importantly, prior ...
متن کاملReplication termination mechanism as revealed by Tus-mediated polar arrest of a sliding helicase.
The replication terminator protein Tus of Escherichia coli promotes polar fork arrest at sequence-specific replication termini (Ter) by antagonizing DNA unwinding by the replicative helicase DnaB. Here, we report that Tus is also a polar antitranslocase. We have used this activity as a tool to uncouple helicase arrest at a Tus-Ter complex from DNA unwinding and have shown that helicase arrest o...
متن کاملHelicase–Contrahelicase Interaction and the Mechanism of Termination of DNA Replication
Termination of DNA replication at a sequence-specific replication terminus is potentiated by the binding of the replication terminator protein (RTP) to the terminus sequence, causing polar arrest of the replicative helicase (contrahelicase activity). Two alternative models have been proposed to explain the mechanism of replication fork arrest. In the first model, the RTP-terminus DNA interactio...
متن کاملMechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction.
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 31 شماره
صفحات -
تاریخ انتشار 2016